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INTRODUCTION 

Time Delay Estimation (TDE) has received considerable 
attention in recent years, primarily because of its 

applicability to source position estimation in passive 

sonar.  This paper presents the more significant related 

theory and analysis developed recently in this area.  The 

two broad classes of (1) TDE when the source and receivers 

are in relatively fixed positions and (2) TDE when there is 
relative motion between the source and receivers are 

considered, with emphasis on the latter, more general class, 

By way of background, a brief description of the typical 

sonar problem which has motivated much of the research in 

this area is given.  Next the no motion case is studied, 

followed by analysis for the case with motion.  Finally, a 

computer implementation of a motion compensated 

cross-correlator is presented and results which corroborate 

the theory and analysis are presented and discussed.  A 

brief computer program description is provided in Appendix 
A. 



1.0  APPLICATION OF TIME DELAY ESTIMATION TO SONAR 

Sonar systems may be divided into two major categories: 

Active Sonar and Passive Sonar.  In Active Sonar, a 

pre-determined signal is transmitted by the sonar into the 

ocean environment.  The received echo from objects in the 

ocean is then analyzed to obtain information about the 

objects such as their nature, location, and movement.  Since 

the form of the signal can be controlled, it can be designed 

to best meet some desired performance criteria such as 

detectability and spatial resolution.  The distance to an 
object is determined by measuring the total travel time of 
the signal, from the transmitter to the object and back to 

the sonar receiver, and utilizing knowledge of the speed of 
sound in water.  The angle to the object can be determined 

by processing the received data only in certain angular 

directions (a process referred to as beamforming).  The 

major drawback of Active Sonar is that the location of the 

sonar is given away when it transmits, a very undesirable 

effect for military applications.  Also, its performance can 

be greatly limited by reverberation of the transmitted 

signal, especially for high-powered transmitters in shallow 

water or in an area with many scatterers, such as 

particulate matter and biologies.   ' 
'I ■ ■ 

The alternative to Active Sonar is Passive Sonar which 

"listens" for sounds emanating from the objects themselves, 

such as flow noise, machinery noise, and marine life noises. 

The signal is typically processed by spectral analysis to 

determine the characteristics of the objects.  A major 

limitation to Passive Sonar is a lack of complete knowledge 

of the characteristics of the signal, requiring more flexi- 

bility in the processing.  Additionally, since the travel 



time of the received signal is not known, the distance to 
the source cannot be measured directly.  Instead, multiple, 
accurate bearings to the source must be measured, from which 

a range can be determined indirectly.  It is primarily for 

the purpose of obtaining these accurate bearings that Time 

Delay Estimation (TDE) is employed in Passive Sonar. 

References [1], [2], [3], and [4] contain extensive material 
on sonar and related signal processing.  Reference [5] 

contains many papers on TDE and provides an excellent 

overview of much of the more recent work on the subject; in 

particular, the article by Carter summarizes TDE as applied 
to Passive Sonar. 

Figure 1 illustrates the basic model used for analysis 

of passive TDE.  The source and two receivers, with a single 

propagation path to each receiver, are all assumed to lie in 

the same plane.  In this planar model it is also assumed 

that there is no relative motion among the source and 

receivers.  The signal, s(t),  arrives at Receiver 1 then at 

Receiver 2 at a time D later.  For a distant source the 

attenuation, a, of the signal arriving at Receiver 2 is s 1. 

Also input at each receiver are noise n^(t) and n2(t), which 

are assumed to be uncorrelated with each other and the 
signal.  The signal and noise are also assumed to be 

zero-mean, wide-sense stationary, broadband random 

processes.  The equations for the model are 

r^(t) = s(t) + n^(t) (1.1.a) 

r2(t) = s(t + D) + n2(t) (1.1.b) 

There are more than one possible source locations for 
which the same time delay value, D,  would occur between 

A 
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Receiver     1 

FIGURE   1 

PLANAR MODEL 
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arrivals at the two receivers [6], as illustrated in Figure 

2.  In fact, the source could be anywhere on the locus of 

points that form a hyperbola.  Figure 3 shows the geometry 

from which the equation for the hyperbola and the equation 

for the bearing to the source (measured from the midpoint 

between the receivers) for any point on the hyperbola can be 

derived.  The difference in the range between the source and 

Receiver 1 and Receiver 2 is 

I 
R2 - R-, = cD " 

where c is the speed of sound in water, D is the time delay. 

Substituting for R- and R,, the equivalent Euclidian 

distance for the given coordinates 

-y/(X+L/2)^ + Y^ - /x-L/2)^ + Y^' = CD 

(4/c^D^)X^ - [4/(4(L/2)^ - c'^D^)]Y^ = 1.        (1.2) 

Equation (1.2) defines a hyperbola.  The bearing angle 0 is 

found from 

COS(e) = (CD/L)[1 + (L/2R)^ - (cD/2R)^] ■'"/^ 

As seen in Figure 4, if the distance to the source is large 

compared to the receiver separation (i.e., R>>L, as is 

usually the case), then the bearing is approximated by the 

angles formed by two straight lines which form assymptotes 

to the hyperbola.  This bearing then is related to the time 

delay D, and the sensor separation, L, by 
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Rg = R^ + cD 

Rcvr S 

FIGURE 3 

SOURCE/RECEIVER GEOMETRY 
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BEARING ANGLE FOR LARGE RANGE 



C0S(8) S (CD/L) 

e =  cos"-'- (cD/L)      I (1.3) 

where c is the speed of sound in the ocean.  Thus, for known 

sensor spacing, L, an estimate of the time delay yields the 

bearing to the source (albeit, it is an ambiguous bearing 
which must be resolved by other means such as ship 

maneuvers, or auxilliary information like rough bearings 

from passive beamforming).  If three co-linear receivers are 

used, then ranging is possible by using two bearings and the 
sensor spacing for a triangulation [5, pp. 463-470]. 



2.0  TIME DELAY ESTIMATION WITH FIXED SOURCE AND RECEIVERS 

■ 

The most conunon method for estimating time delay- 

passively is to compute the cross-correlation of the signal 

from two spatially separated receivers.  A generalized 

method for estimating time-delay with cross-correlation was 

described by Knapp and Carter [7], and is recounted here. 

I 
For the model defined by (1.1) 

\lr2(h'-^2) = ^ [r^(t^)r2(t2)] 

The value of T = t, - t2 which gives the maximum value for 

the cross-correlation is chosen as the estimate of the true 

delay, D. 
i 

Since we are always limited to a finite observation 

time, Rj.i;i-2^"'^) must be estimated.  For ergodic processes, 

this is computed by: 

where T is the finite observation time.  This estimation of 

^rlr2^^^ plus the presence of noise will result in errors in 

the computation of D, the delay estimate.  In practice, 

Rj.-j_j-2("t) is computed from the inverse Fourier transform of 

the estimate of the cross-spectrum, G , o^^^' ^^* 

In order to reduce the error in R , ^(x), and thus improve 

the accuracy of D, we can pre-filter r-,(t) and ^^(t) prior 
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to cross-correlating.  The pre-fliters would be selected to 

emphasize frequencies where the signal-to-noise-ratio (SNR) 

is highest and de-emphaize them where it is low.  Figure 5 

illustrates such a configuration. 

For pre-f liters H-^(f) and H2(f), which operate on 

r-j_(t) and r^it)   and give outputs y^(t) and y2(t), 

respectively, the cross-spectrum is then 

'^yly2 (^) = ^1<^> ^2^^)* ^rlr2<^^ (^.3) 

and the cross-correlation is computed from 

Vy2 (') = C  W(f) G^ir2<f) ^^^"^' ^f (2.4) 
■' I 

where W(f) = H^(f) H2(f) .  Thus, the prefiltering can be 

done as frequency weighting in the frequency domain. 

Equation (2.4) is referred to as the Generalized 

Cross-Correlation (GCC) function, and W(f), the General 

Frequency Weighting, which is chosen to optimize some 

performance criterion. 

2.1  Some Frequency Weightings Used In Cross-Correlation 

Table 1 lists several proposed frequency weightings. 

Each is described in detail in [7].  As the weightings are 

functions of the signal and noise spectra, it must be kept 

in mind that, in practice, the weightings themselves must be 

estimated (unless there is sufficient prior knowledge of the 

spectra).  The major features of each are outlined in the 

following. 



FIGURE 5 

GENERALIZED CROSS-CORRELATION FUNCTION 
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PROCESSOR WEIGTH: W(f) = H^(f)H2 (f) 

CROSS-CORRELATION 

ROTH 

1- 

1 

^rlrl<f) 

SCOT 

V ^rlrl(f) ^r2r2<f> 

PHAT 

°rlr2(f) 

ECKART 
G  (f) 

t^nlnl(f)^n2n2^f)^ 

^rlr2(f) 

ML or HT 

^rlr2(f) [1-C^1^2<f)^ 

TABLE 1 

SOME FREQUENCY WEIGHTING FUNCTIONS FOR CROSS-CORRELATION 
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The first weighting, W(f) = 1 is, of course, no 

weighting at all and is used when the signal and noise have 

flat spectra, equal bandwidths and the SNR is constant 

across the entire band.  It is often referred to as the 
Standard Cross-Correlation (SCC).   1 

i 

The Roth processor [8], which gives correlation 
estimate i 

^rlrl^f)    , 

is also the estimate of the impulse response of the filter 

H(f) = 
^rlr2(^) 

^rlrl<^) 

which is an optimum approximation of the linear mapping of 

r^(t) to r2(t) (Wiener-Hopf filter).  Since 

Slrl^f) = Ss<^) ^ ^nlnl<^> 

we get , 

^rlr2<f) 

SlY2^'^   =  I»   e2"f^ df 

^ss(f) ^ ^nlnl(^) 

I 
This weighting can be seen to suppress those frequencies 
where the noise at receiver 1 is highest. 



15 

The Smooth Coherence Transform (SCOT) [9], [10] 

processor can be seen to suppress frequencies where the 

noise in either or both channels is high.  The process is 

equivalent to "pre-whitening" the inputs r,(t) and r2(t) by 

H^(f) = l/Gj-ij-iCf) and H2(f) = 1/G^2r2(^^ 

and then cross-correlating the results.  For the case of 

white signal plus non-white noise, the effect of 

pre-whitening is to attenuate the cross-spectrum estimate 

where the noise is highest and conversely where it is 

lowest.  If G^ij-]_(f) = Gj.21-2^-^^' ^^® ^'^'^'^ ^^^  ^^ seen to be 
equivalent to the Roth processor. 

The Phase Transform (PHAT) [10] window was developed 

specifically to minimize the spreading of the correlation 

peak caused by non-white signal.  For the ideal case of 

white signal and no noise, the cross-correlation is a delta 

function, 6(t - D).  A non-white signal results in the 

spreading or smearing of the delta function through 

convolution with the transform of the signal spectrum.  For 

perfect estimation, where G^ij-2(f) = *^rlr2^^^' ^^^^ 

^rlr2^f) 
= eD27tfD ^ eje(f)_ 

^rlr2(f)' 

That is we get unit magnitude with linear phase.  Then 

^yly2^^^ = 6(t - D] and no spreading takes place.  In 

practice, though, G^^^^{f)  /  ^^^^2^^)' ^^'^  ^(f) ^ 2nfD,   but 
is erratic, resulting in a correlation which is not a delta 

function.  Another serious problem with the PHAT is that it 
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weights G^^^^{f)   as the inverse of Ggg(f), thus 

accentuating, rather than attenuating the frequency regions 

where the signal is weakest.        ' 
! 

The weighting referred to as the Eckart Filter [11] has 

the characteristic of maximizing the ratio of the change in 

the mean of the correlator output when signal is present, to 

the standard deviation of the correlator output when there's 

noise alone.  Like the SCOT, this processor suppresses 

frequencies where the noise is highest, but, additionally, 

it gives zero weighting to the regions where G  (f) = 0. 

The last weighting function, the HT (for the 

originators Hannan and Thompson [12]) is shown in the next 

section to be a maximum likelihood estimator of the delay, 

D, when the assumption of Gaussian noise and signal is made. 

It is also shown that the variance of the delay estimate, 

Var[D] is equal to the Cramer-Rao Lower Bound (CRLB), and, 

as such, it is an optimum (minimum variance) estimator (see 

next section).  It's use of the magnitude squared coherence. 

^rlr2(f) 
r    (f\   =    (2.5) 
^rlrZ^f)  G^lrl<^> ^r2r2<f) 

between the receivers serves to emphasize the high SNR 

regions while attenuating the low, like the SCOT.  Like the 

PHAT, the 
^rlr2(f) term in the denominator tends to 

reduce the spreading of the correlation peak, but in this 

case, it suppresses the regions where the phase, e(f), is 

most erratic, (namely the low or zero SNR regions) by the 

coherence terms. 
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For the case where the SNR is low and « = 1, the HT and 

Eckart processors can be shown to be equivalent [7]. 

Additionally, at low SNR, they could be interpreted as SCOT 

processors with added SNR weighting or as PHAT processors 

with added SNR weighting.  These processors have recently 

been implemented and analyzed as described in [13], [14], 

[15] and [16]. 

2.2 Derivation of Generalized Cross-Correlation (GCC) 
as a Maximum Likelihood Estimate 

Knapp and Carter [7] derive the Maximum Likelihood (ML) 

estimate for time delay, which proves to be the same as that 

proposed by Hannan and Thompson.  This derivation is 

summarized by Scarbrough [13] with some added clarification 

and is presented here in a slightly modified form. 

Outlining briefly, the assumption that the signal and 

noise are Gaussian processes is made in addition to the 

previous assumption of being wideband, wide sense 

stationary, zero-mean, and uncorrelated with each other.  We 

will determine an observation vector, R, which depends upon 

the true time delay, D, and the signal and noise auto- and 

cross-power spectra, which are assumed known.  A maximum 

likelihood (ML) estimate of the delay is made by picking as 

our estimate the hypothesized delay, t, which maximizes the 

probability density function (pdf) of R conditioned on x. 

It will be seen that the estimator reduces to picking the x 

which maximizes the cross-correlation function of the 

receiver signals whose cross-spectrum has been multiplied by 

a weighting function formed from the auto- and cross-spectra 

of the signal and noise.  Furthermore, it will be seen that 

the variance of this ML estimate of delay achieves the 
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Cramer-Rao Lower Bound (CRLB) and, as such, is the optimum 

estimator, in a minimum variance sense. 

I 
Our first step is to express the received waveforms, 

r^(t) and r^it)  over the interval, O^T, by their Fourier 

Series coefficients.  This can be done by forming the 

periodic extension: i 

r^(t+mT) = R^(t), O^tST, i = 1, 2 

I 

for any integer value of m.  The Fourier Series coefficents 
for these periodic extensions are then 

R^(k) = 1/T /^ 5^(t)e'^^27xfQt ^^^ ^ ^ ^^2 (2.6) 

where 

f^ = 1/T . o I 

The two received signals r^(t), i = 1, 2 can be computed 

from these Fourier coefficients by taking one period of the 
inverse relationship.  That is 

r^(t) = ^R^(k)e^^^"^o'^, for all t 
k=-oo 

r^(t) = r^(t) for O^t^T        I 
i 

For practical cases the r.(t) are bandlimited signals so 

that the Fourier coefficients are all zero outside some 

range, say, -N^k^N.  We see then that the r.(t) can be 

characterized by the set of Fourier Series coefficients, 
R^(k), -N^k^N. I 
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We wish to obtain an expression for the joint 

probability density function of these coefficients 

conditioned on a hypothesized value for the time delay, 

denoted by x, which is chosen from the range of possible 

delays.  As will be seen, the coefficients are also 

dependent upon the power spectral density functions of 

received signals, which, for now, we will assume are known. 

First we observe from (2.6) that each coefficient 

R^(k), i = 1, 2, for any particular value of k in the range 

-N^k^N, is a zero mean Gaussian random variable.  This is 

because it is derived by a linear transformation on the 

received signal r^(f), which, as we have assumed, is 

zero-mean Gaussian.  So we have 

E[R^(k)] = 0 -N^k^N 

E[R2(k)] = 0 -N^k^N 

For large T (i.e., small f ) i 
o 

E[R^(k)R2(j)*] =   ji G^^^2 (kfo^       for k = j 

-^0 for k 7^ j 

That is for large T, the coefficients are essentially 
uncorrelated. 

We next form a bivariate Gaussian random column vector 

R(k) ^ [R^(k),R2(k)]' 
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for each value of k in -N^k^N ( the ' denotes the transpose 

of the vector).  In order to represent its conditional 

density function, we need the covariance matrix 

COV k|T 

Cov[R^(k),R^(k)] Cov[R^(k),R2(k)] 

Cov[R2(k),R^(k)] Cov[R2(k),R2(k)] 

where Cov (R^s/Rj,) is the covariance of the random variables 

R^(k) and R^(k) 

Cov[Rj^,R^] = E[R^(k)R^(k)*jt] - E[R^(k)|T]E[R^(j)*|t] 

Since the R.(k) are zero mean random variables 

Cov[Rj^,R^] = E[R^(k)R^(k) |T] 

which from (2.6) is 

Cov[R (k) , R (k)] = =; G (kf ) L jjj\ / /  n^ '^   T rm,rn^  o' 

Substituting into the covariance matrix: 

COV k|T   T 

G T T(kf ) G T ^(kf ) rlrl^  o'  rlr2^  o' 

^r2rl(^fo)  ^r2r2<^fo) 

= I Q(k), (2.7) 

where Q(k) is referred to as the cross-spectral density 

matrix. For any particular value of k, -N^kSN, we now can 

write the bivariate Gaussian probability density function 

for R(k) conditioned on x, in standard form: 
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p(R(k)|t)   -   {2n cov 
k|t l/2Jlxp-l/2{ * f 

exp -1/2^ R(k)  [COVj^ ,]"' R(k| 

We now wish to consider the conditional pdf of R(k) for all 

values of k, -N^kgN, considered jointly.  To do this we 

define our observation vector as 

R ^ [R(-N), R(-N+l), R(N)] 

Now since the R(k)'s are uncorrelated (and being Gaussian, 

also independent), the conditional joint pdf of R is simply 

the product of the pdf's for each individual R(k): 

N 

p(R|t) = 7T p(R(k)|t) 
k=-N 

if we let: 

N -1 

c = 7T  (27t|c0Vj^  1^/2) 
k=-N (2.8) 

where is the determinant, and 

N 

'.= z * I ,-1, J- = >    R(k)  [covj^i^] "R(k) 

k=-N 

(2.9) 

we can write p (R|T) in the simple form of 

p(R|x) = c exp(-J^/2) (2.10) 
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Summarizing where we stand, we have an observation vector R 

which is conditioned upon the possible values of the time 

delay, and is also dependent upon the power-spectra of the 

received data.  The elements of our observation vector are 

the Fourier Series coefficients of r^(t) and r^Ct).  Now we 

will use a maximum a posteriori decision criterion and 

assume that all possible values of x are equally likely (the 

actual range of possible values for t is dependent upon the 

source/receiver geometry).  Thus the maximum likelihood 

estimate for D (the actual time delay of interest), is to 

choose D = T, where t gives the maximum value for p (R | t). 
That is, we choose the x that most likely would have given 
us the observed values in R.        , 

We will now use equations (2.7), (2.8), (2.9), and 

(2.10) and some simplifying approximations to reduce this 

test to equivalent ML tests until we get it in the final 
desired form. 

First, we show that c is independent of x, and thus can 

be dropped from the test. For uncorrelated noise, our model 
yields 

I 

°rlrl<^fo> = ^ss^^^o) ^ ^nlnl^^fo) ^2.11) 

^r2r2(^fo) = ""Ss^^^o) ^ Gn2n2<'^fo)        <2.12) 

^rlr2 (kf^) = -Ggs(kfQ)e"^^2"V (2.13) 

(substituting the hypothesized delay, t, for the true delay, 

D).  Then the determinant of COV, ,  in (2.8) is 
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cov k|T = [G33(kf^)+G^,^,(kf^)][cc-G3^(kf^)+G^2n2<^fo) 

■^  ss        -* "-  ss        -■ 

The exponentials in the last term cancel, so the determinant 

and thus c are independent oft. 

Next, we observe that the summand of (2.9) is ^0 

(positive semidefinite, [17, p. 182]).  With this in mind 

and dropping the c term, the equivalent test is to choose x 

which gives the minimum value for J, in (2.9). 

We now make an approximation based on the relationship 

between the Fourier Series and the Fourier Transform.  For 

large T and kf held constant, it can be shown [18, pp. 

23-25] 

Jn = /" R(f)*' Q"^(f) R(f) df (2.14) 

We next determine Q" (f) from (2.7), substitute into (2.14), 

and use (2.11), (2.12), (2.13) to obtain 

J^ = J^ - J3 

where 

^2=x: ^l(f)|'/^rlrl(f) H^2(f)r/Gr2r2<f) 1/[1-C^lj.2<^)^'^^ 

(2.15) 

J3 = 2l^R^{f)R^{fy 
G ■(f)eJ2nfx 
ss df 

^rlrl(f) ^r2r2(f)(l-'^rlr2(f)) 
(2.16) 
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and 

^rlr2(f) - 

^rlr2(f) 

'rlrl(f>Gr2r2<f) (2.17) 

is the magnitude squared coherence [19, p. 54] which is 

bounded by -1 and 1. I 

Since J^  is not dependent on t, the ML estimate reduces 
to picking T which maximizes J- 

If the R^(f)R2(f)  term in (2.16) is computed for the 

interval 0-^T by averaging short segments, then it can be 

viewed as being equal to T times an estimate of the 

cross-power spectrum, T G^]_j-2(f)-  We can rewrite J  as 

J^ = 3 = 2TCC X^ G^^^2 ,(f) 

G (f) ss 
J2nft 

df 

^rlrl(f)^r2r2(^)  <l-^rlr2<^)) 

(2.18) 

but, using (2.11), (2.12), (2.13) and (2.17) 

Gss<f> 

'rlrl(f)Gr2r2(f) 

°rlr2<f) 

'=rlrl(f)^r2r2<f) 

°rlr2<f) ^rlr2(f) 

^rlr2(f)|    ^rlrl(f)^r2r2(^) 



25 

Crlr2(f) 

^rlr2(f) 

(2.19) 

Substituting (2.19) into (2.18) and dropping the 2Toc 

constant, we get our ML estimator in our final form, that is 

a Generalized Cross-Correlation (GCC) 

1        C  9(f) 
.ML   ,_..«.:    _. rlr2      ^.^^^^ ^^ 
\lr2 (^) = Xoo G^ir2(f) 

°rlr2(f)|  [1 - Crlr2(f)l 
(2.20) 

Summarizing, our ML estimate reduces to picking as our 

estimate of the time delay D, the value of T which maximizes 

the GCC.  The GCC is computed by taking the inverse Fourier 

Transform of a weighted estimate of the cross-power spectrum 

of the two received signals r^(t) and r^(t).  The ML 
weighting is 

W"^f) = 
^        Crlr2(^) 

Klr2(f)|  tl-Crlr2(f)3 (2.21) 

which is defined as long as either or both G ^ ,(f) and nlnl 
Gj^2n2(^^ are non-zero and independent (thus C , ^{f)  <1), as 
would be the case in practice. 

Up to this point, we have assumed that the signal and 

noise auto- and cross-spectra were known.  In practice they 

may have to be estimated by any of various techniques (see 
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for example [19], [20], [21], [22], and [23]).  In such case 

the ML estimator is only approximately achieved. 

We now will very briefly show that this ML estimator 

has a variance which is equal to the minimum bound on the 
variance, and as such is optimum. 

Carter and Knapp [7] indicate that by using results 

obtained from [24], the variance of a time delay estimate 

which is in the region of the true delay (i.e., small 

estimation error) and using any general weighting, W(f), is 

Var[D] = 

, (2.22) 

If we substitute W^^(f) from (2.21), make use of the 

definition of C^-|^^2(f) f^o"^ (2.17), and consider the 
frequency symmetry of the magnitude of the cross-spectrum, 
(2.22) reduces to 

Var[D] = 
2 ^rlr2(f)       ' "' 

2T jQ(27if)"   df 

l-^rlr2<f> 
(2.23) 

We now show that this is the minimum variance.  The 

Cramer-Rao Lower Bound (CRLB) on the variance is [25, p. 
72] : 
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Var[D] ^ - 
3^1n p(R(k)|Q,t) 

dx' 
T = D 

Since, for the ML estimator, the only part that is dependent 

on t is J^, then we can write 

Var[D] ^ - E  (J3/2) 

dx' 

-1 

Since 

^rlr2<f> = ^rlr2(f) ^"''"^ 

and 

E[G , _(f)] = G^,^,(f), rlr2 rlr2 

we have 

E [J./2] = T j"e+^27rf(t-D) 
^rlr2<f) 

^-Crlr2(f) 

df 

Then the minimum variance is 

Min Var[D] = TJ.!(27rf)2 
Crlr2<f) 

l-^rlr2(f) 

df 

-1 

comparing this with (2.23) and considering the symmetry of 

'^rlr2^^^ ^® ^^^ ^^^^ ^^^ ^'^'^  attains this minimum variance. 
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2.3  Performance of the GCC Time Delay Estimator 

I ■■    •_ ■   ■ 

The variance of the TDE by the GCC method (2.23), as 

mentioned earlier, achieves the Cramer-Rao Lower Bound 

(CRLB) of the estimator variance.  In the form of (2.23), it 

is somewhat difficult to interpret directly the effects of 

such important parameters like signal and noise bandwidth 

and SNR.  Quazi [25] gives several forms which are more 

useful for such interpretation. 
I    ... 

If the autospectra of the signal and noise are assumed 

to have the same shape (i.e., SNR constant), over the band 

f]_ to Z^  Hz, it is easy to show that the CRLB is 

CRLB = 
87t^T 

1+2SNR 

SNR' 

If SNR <<1 then 

CRLB 
BTX^T SNR' 

f3 . f3 
^2   ^1 

f3 . f3 
^2   ^1 

(2.24) 

(2.25) 

This can be expressed in terms of signal and noise bandwidth 

W = ^2'^!'   ^^^  center frequency f^ = {f^+f^)/2,   as (for SNR 
<<1): 

CRLB S 

871^   SNR^   TW   f    l+(W^/12f ^). o    ^     '        o 
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for  SNR >>1 

3 1 1 
CRTP   ~ • 

47t^T SNR 
^2        ^1 

or 

CRLB S 

1 

47t^   SNR   TW   f    l+(W^/2f ). 
O O 

From the above representations, it is seen that CRLB varies 

inversely as the time-bandwidth product, TW.  For W<<f , it 
o 

varies inversely as the center frequency, f .  And at low 

SNR's, it varies inversely as the SNR^, while at high SNR's, 

it varies inversely as SNR.  Finally, an important 

relationship is that for a given SNR, W, and f , the 

variance varies inversely as the total observation time T. 

The CRLB gives actual achievable performance for the 

GCC if erroneous estimates are in the region of the true 

correlation peak.  If there is insufficient observation time 

for a given SNR and bandwidth, then large anomalous peaks 

can occur far from the true delay region which results in 

large estimation errors.  In this situation, the peformance 

of the estimator will be signficantly worse than the CRLB. 

Figure 6 illustrates this effect for a low pass filtered 

signal.  The top plot shows what an ideal correlation would 

look like for no noise present and very long observation 

time.  For the realistic case of moderate noise present, the 

center figure is more representative.  The correlation peaks 

occur away from the true delay, but are still in the general 
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Anoma ly 

FIGURE 6 

ANOMALOUS PEAKS IN THE CROSS-CORRELATION FUNCTION 
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neighborhood.  In this situation the CRLB gives a good 
estimate of actual performance, i.e., it is a "tight" bound. 

As the SNR is decreased further, a point is reached 

where large peaks (referred to as anomalies [27]) occur far 

from the region of the true value of the time delay.  In 

this situation, the performance deviates significantly (gets 

worse) from the CRLB, and it is no longer a tight bound. 

Recent work by lanniello, Weinstein and Weiss has dealt 

with determining a tighter bound than the CRLB at these 

lower SNR's [28], [29], [30], [31].  lanniello [29] has 

derived a performance estimator (not a bound in the strict 

sense), which has been called the Correlation Performance 

Estimate (CPE) [32], for the GCC.  It is shown to be 

Var[D]^pg = ^V^ ^ (l-P)V^^t^]^j^L3 (2.26) 

T^ is the correlation peak search window, i.e., if we know a 

priori that the maximum possible value of t is ± T then we o 
search for peaks only in this region of the 

cross-correlation function (for example if we know the 

sensor separation, L, we know the maximum delay between them 

is T^ = ± L/C, c = speed of sound).  The probability that an 

anomalous noise peak occurs (i.e., the maximum correlation 

peak in -T^ ^ x ^ T^ occurs "far" from the true delay) is P. 
This probability is shown to be: 

-'-00 

2n 
exp[-(x-K^)2/2]dx [xf^ (l/2n)exp(-y2/2)dyT 
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where:   K, = 
■yjB^ism) 

[(SNR)^ + (1+SNR)^]-'-/^ 
[ 

2 SNR 
Z = [1+  ]l/2 

(1+SNR)^ 

M = 4BT^ (for uniform spectra over -B^f^B) 

■   ■ '      1 
A 

= # independent values of R ^ „(t) in -T ^t^T yly2       o   o 

and B  is the statistical bandwidth (B = 2B for flat 
o S 

spectrum, low-pass signal and noise).  Uncorrelated 

zero-mean Gaussian signal and noise are assumed.  One can 
evaluate P numerically [13]. 

From (2.26), we see that if P = 0 then we just have the 

CRLB.  If P = 1, then we have the variance of a uniformly 

distributed random variable, ranging between ± T , as might 

be expected, since at very low SNR's, P ^ 1, and the peak 

can occur anywhere, with equal likelihood, in the ± T peak 
o 

search region. 
I 

Scarbrough, Tremblay and Carter [32], have done 

computer simulations which substantiate these results and 

extend them to make some observations regarding the 

significance of TDE processing by coherent vs. incoherent 

means.  Figure 7 shows a typical comparison of the CRLB and 

the CPE performance plots.  (Note that the vertical axis is 

in log-j^Q of the standard deviation of D, Stdv[D], not the 

variance.  In this case signal and noise are low-pass 

filtered, flat spectrum, Gaussian processes, both with 
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CPE  vs.   CRLB 
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bandwidth, B = 100 Hz, integration time, T = 8 sees, and 

correlation search peak windows of T = ± 1/8 sec.  The 

estimator is seen to achieve the CRLB for SNR ^ 6dB.  As the 

SNR is lowered, performance rapidly starts to deviate away 
from the CRLB, first through a transition region, then 

finally into the region where the delay estimate becomes 
uniformly random across the peak search window, ± T . 

Figure 8 is a family of curves for various integration times 

and fixed bandwidth and T^.  As the integration time is 

increased the threshold SNR gets lower.  Observe that for 

fixed B and T^, the value of log-j^Q Stdv[D] at the various 
threshold SNR's is nearly constant.  (Some further 
discussion on this is given in [13] and [33]).  Figure 9 

shows the results of the computer simulation done in [32], 
for two integration times (the X's and O's are the 

simulation data points overlayed on the calculated CPE's and 
CRLB•s). 

Figure 10 addresses the implications regarding coherent 
vs. incoherent TDK processing.  The top curve, labeled "CPE 

(T=2)", is the CPE for a total integration time of 2 

seconds.  If 4 of these delay estimates are averaged to get 
a new estimate, the new estimate will have a reduced 

variance equal to 1/4 that achieved by 2 second estimations. 

This process is referred to as "incoherent" processing and 

its expected performance is the curve labeled "CPE (T=8, 

N=4) (incoherent)."  If, on the other hand, the full 8 

seconds of data was processed coherently as one long 

correlation (or equivalently, coherently averaged 

consecutive correlation functions from contiguous, 

equal-sized partitions of the 8 second data), the 

performance obtained is the curve labeled "CPE (T=8)." We 

see that at higher SNR's the 8 second incoherent processing 
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FIGURE  8 

CPE  AND  CRLB  FOR VARIOUS   INTEGRATION  TIMES 
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achieves the CRLB for T=8 seconds, but begins to deviate at 

SNR2, the threshold SNR for 2 second averaging.  But, the 8 

second coherent processor achieves the 8 second CRLB down to 

SNRg, the 8 second threshold SNR which for this case is >4dB 

lower than SNR2-  Thus, coherent processing is optimum at 

lower SNR's than the incoherent method, given the same 
amount of data. 1 



3.  TIME DELAY ESTIMATION WITH MOVING 
SOURCE AND/OR RECEIVERS 

We have seen that the TDE correlator performance losses 

due to decreasing signal-to-noise ratio (SNR) can be 

regained to near CRLB performance by increasing the coherent 

integration time, T.  For source and receivers with fixed 

relative positions, the GCC can be used without 

modification, other than to increase the total integration 

time (e.g. by taking longer segments or increasing the total 

number of segments processed).  However, when the relative 

motion between the source and receivers is different for 

each of the receivers, the time-delay of arrival varies over 

T.  This results in a loss of coherence between the 2 

received signals which worsens as T gets longer, effecting a 

"smearing" of the correlation peak and a drop in it's 

amplitude which in turn can cause a significant increase in 

error. This is especially true if the delay varies by more 

than the correlation time width of the source signal during 

the [O^T] observation time [34].  In order to get improved 

performance, one must compensate for this varying time delay 

to again allow longer integration time and use of the GCC 

processor.  This section addresses this problem and some 

approaches to resolving it. 

3.1 Motion Model 

The model presented here is based on the one given by 

Knapp and Carter [35].  Other versions, which are eqivalent 

but whose form offer additional insight to the problem are 

presented in [34], [36], [13], and [38].  The form of the 

model in [13] is primarily used in this section. 
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We let s'{t) be the signal received at receiver 1 when 

no relative motion or noise is present.  Then, for the case 

with relative motion and additive noise, an appropriate 
model would be 

I 

r^(t) = s'(p^t)+n^(t) (3.1.a) 

r2(t) = as'(p2(t+D))+n2(t)     | (3.1.b) 

The functions r^(t) and r2(t) are the receiver 1 and 2 

inputs having stationary, white, zero-mean additive noise 

n^(t) and n2(t), which are uncorrelated with each other and 
s'(t).  The time delay, D, is the time difference of arrival 

(TDOA) as in the no motion model, and « is the attenuation 

of the signal at receiver 2 relative to that at receiver 1 

(in most cases of interest, asi).  The relative motion 

between the source and each of the receivers causes a time 

compression/expansion, termed "time companding," [35] which, 

in general, is different for each receiver, and is 

represented by p^ and P-- ^°^  relative velocity v. between 
the source and receiver i, and signal propagation velocity, 
c, then 

P2 = I+V2/C I 

For acoustic sources in the ocean, c =  4900 feet/second and 
generally c>>v., so p. s 1.  If a positive velocity v- is 

assigned to source and receiver motion towards each other, 

then p. > 1.  It can be seen that the model in (3.1) reduces 

to the no motion model for p, = P- = 1.  An important 
assumption made is that p, and p„ are essentially constant 
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over the correlation time O^T (i.e., accelerations in 
source/receiver positions are ignored). 

A slightly different representation of the model will 
give a little added insight to the problem. 

Let s(t) = s'(p^t).  Then 

s'(t) = s(t/p^) 

s'(P2(t+D)) = s([p2/Pi](t+D)) 

Now let 

P = P2/P1 

then we can write (3.1) as 

r^(t) = s(t) + n^ (t) (3.2.a) 

r2(t) = ocsO(t+D)) + n2(t) (3.2.b) 

In this form we see that the motion effects can be thought 

of in terms of a relative time companding (RTC), [35], [38], 

of the signal at receiver 2 with respect to that at receiver 
1. 

In yet another form, the motion effects can be seen as 
a time-varying time delay.  From (3.2.b): 



sO(t+D)) = s(pt + pD) 

= s(t-t+pt+pD) 
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= s(t+(p-l)t+pD) (3.3) 

Define: 

d' = (p-1) 

^o - PD 

d(t) ^ d't + d (3.4) 

then 

s(p(t+D)) = s(t+d't+dQ) 

= s(t+d(t)) 

and our model can now be written as: 

r^(t) = s(t) + n^(t) (3.5.a) 

r2(t) = ocs(t + d(t)) + n2(t) (3.5.b) 

where d(t) is seen to be a linearly time-varying delay with 

rate, d', and initial value, d^.  The two representations of 

the motion model in (3.2) and (3.5) point to two methods for 

compensating for motion effects.  The first indicates a need 

to compensate by processing the receiver 2 inputs with a 

time compander that negates the time-companding due to 

motion and reverts back to the no motion case.  The second 

form indicates compensation by removal of the time-varying 
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time delay effects.  These approaches are discussed in the 

next two sections. 

3.2 Compensating for Relative Time Companding 

From (3.2) it is apparent that the effect of relative 

time companding may be removed by passing ^jCt) through a 

time-compander which will perform time-scaling that is the 

inverse of p, i.e. generate 

r3(t) = r2(t/b) (3.6) 

where b = p, ideally.  Then r-|^(t) and r2(t) can be processed 

with the GCC as in the no-motion case. 

By an argument very similar to that used to derive the 

GCC as a ML estimator, Knapp and Carter [35] show that the 

ML estimator when motion is present (at least to a 

reasonable approximation when the power spectra are 

unknown), is to maximize 

J(t,b) = ll  Ri(f)R3(f,b)*W(f,b)e^27TfTb ^^    ^3_^j 

where t and b are hypothesized values for D and p 

respectively, R^(f) and R^ (f,b) are the Fourier Transforms 

of r-|^(t) and r3(t), and W(f,b) is the ML weighting function 

derived from estimates of the auto- and cross-power spectra 

of r^(t) and r3(t), defined as 

^rlr3(f'^) 
W(f,b) 

G^,3,3(f,b) (1-C^lj,3(f,b))  (3.8) 
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and '^j-ij.^^^'^)   is the magnitude squared coherence estimate: 

2 
C(f,b) = Prlr3<f'^) 

^rlrl<f> ^rSrS^f'^) (3.9) 

Note that except for the dependencies on b due to the 

hypothesized compensation of r2(t) the above are the same 

form as for the GCC.  Then J(T,b) can be seen to be a 

correlation function with argument tb, which if T = D and b 
= P is DP = d^. 

The compensation for time-companding must be done for a 

range of hypothesized b's, then each J(T,b) is computed as 

in (3.7) giving a two-dimensional ambiguity surface in t and 

b space.  The global peak on this surface is found and it's 

corresponding values of t and p are our ML estimates of D 

and p respectively.  Figure 11 illustrates this process. The 
COMP^, i = 1 to N^, represents compensation for 

time-companding using one of N hypothesized values for b. 

The preceding process is quite expensive 

computationally.  The entire GCC process must be done for 

each hypothesized b, including calculation of W(f,b).  The 

compensating companding processor could involve hardware 

such as a variable speed analog tape recorder or multiple 

rate samplers to effect the time compression/expansion of 

r2(f).  Or it could be done in software with a very fine 

resolution interpolation algorithm followed by variable rate 

re-sampling.  Although any of these methods are feasible 

(Betz has implemented the latter technique and found it to 

perform near optimum [39]), it would be desireable to find a 

more efficient way to compensate for the effects of relative 

motion.  As will be seen in the next section, this can be 
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TIME-COMPANDING BLOCK DIAGRAM 
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I 

done if we compensate for the varying time-delay of (3.5) 

instead of the relative time companding of (3.2). 

I        ■ 

3.3  Compensating for Varying Time-Delay 

The general strategy that will be used to compensate 

for the linearly time-varying delay indicated in (3.4) and 
(3.5) can be summarized briefly as follows.  The total 

coherent processing interval from t = 0 to T seconds, is 

divided into several equal-sized, short-time intervals. 

Assuming that the delay change during each short-time 
interval is relatively small, a modified model is formed by 
approximating the continuously changing delay during each 

short-time interval as a constant equal to the actual delay 

at the mid-point of that interval.  Then, based on this 

model, the compensation is done in a step-wise fashion for 

each short-time interval, by adjusting for the amount of 

delay change from interval to interval.  A compensated 

short-time GCC type cross-correlation function is computed 

for each interval.  These are then averaged to get a total 

coherent processing time of T seconds.  The above is done 

for a range of assumed delay rates, forming an ambiguity 

surface from which the ML delay and delay rate are 

determined.  This process closely approximates the ML method 

of relative time-companding compensation of Section 3.2, but 

without the need of performing time-scaling.  Also, only one 

weighting function, W(f), needs to be computed since there 

is no dependency on an assumed time-scaling factor, b, as 

was the case in the time-companding compensation method. 
i 

This piecemeal approach to removing the effects of 

varying time-delay can be implemented in two ways, as 

described in [36] and, more recently, by [13], [37] and 
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[38].  The effect of this process has been described as 

"deskewing" in [38] for reasons that will be apparent 

shortly. 

From (3.5) we can write the cross-correlation function 

-j^(t) and r2(t) at times t^ and t, as: 

^rlr2 ^\'^2^  = E[r^(t^) r2(t2)] 

= E{ [s(t^) + n-L(t^)][ocs(t2 + d(t2)) + n2(t2)]} 

Since s(t), n^(t) and n2(t) are zero-mean and mutually 

uncorrelated, we have , 

^rlr2^^1''^2^ = «E[s(t^)s(t2 ■*" ^(^2))]. 

Letting t^ = t + t and t2 = t, 

Rj-lj.2(t+t,t) = ccE[s(t+T)s(t+d(t))] 

Since s(t) is wide sense stationary, its auto-correlation 

function is dependent only on the difference of its time 

arguments, so 

^rlr2^^"^^'^) = °^Rss(t-d(t)) 

= o^RggCt-d't-d^) (3.10) 

We see that the cross-correlation function is dependent on 

t, so, clearly, r^(t) and r2(t) are jointly non-stationary. 
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Our next step will be to break up the desired coherent 

processing time, t = 0 ^ T, into M equal-sized short time 

intervals and label them T, where 

'^k = (k-l)T/M ^ t ^ kT/M , k = 1,2, ,M 

It is desired to make these intervals short enough so that 

the amount of change in the delay, d(t), is small compared 

to the change over the entire interval.  Yet, they should be 

long enough to assure independent correlations for each 

interval.  Betz [38] has numerically determined an upper 
bound on the number of segments to be 

M S WT/3.5 , 

for low-pass, white signal and noise. 

Next, we approximate the continuous, linearly varying 

time delay, d(t), in a piece-wise constant fashion by using 

its values at the midpoint of each interval, T, , [13], [36], 

[38].  The value of t at such midpoints is denoted 

tj^ = (k-l/2)T/M 

and the value of the delay at the midpoint is 

d(t,^) = d'tj^ + d^ 

= ^k ^ ^o (3.11) 

where d, = d't, .  This is illustrated in Figure 12. 



43 

IN 

u 
Q 

b 
O 

o 
H 
EH 

Oi    o 

CO 

o o 

CO 
H 
IS 

I 

m 
EH 
CO 



50 

Substituting (3.11) into (3.10) gives the approximate 

short-time cross-correlation function for each interval T 
as 

Rrlj.l(T,k) = aR^^(t-  dj^ - d^) (3.12) 

which now is wide sense stationary (independent of t) within 

the k  interval.  In this form, we can envision that over 

the total observation time, t = 0 ^ T, that the short term 

cross-correlation functions are approximately equal' to 

short-time auto-correlation functions of the signal which is 

initially shifted in delay by d^, and subsequently shifted 

(or "skewed") in t by the amount d^  during each following 

short-time interval.  Figure 13 is an actual set of these 

short-time cross-correlations generated by the simulation 

program described in Appendix A, which illustrates this 

skewing effect for d^ = 0,d'=1/256, and SNR = +6dB.  The 

plots show an expanded region around +50 sample intervals. 

It should be clear from the figure that if these 

correlations are simply averaged, without compensating for 

the skewness, that the resulting cross-correlation function 

will be smeared, as shown in Figure 14.  This smearing leads 

to a broadening of the correlation peak and a reduction in 

it's mean value [34], [36], [38].  This can be expected to 

increase the uncertainty of the true peak location and 

susceptibiity to random noise effects, resulting in an 

increase in the variance of the delay estimate.  Another 

effect is to cause a bias in the delay estimate towards the 

value of the true delay at time T/2 [35].  So our intent is 

to compensate by realigning or "deskewing" [38] the 

correlation functions with respect to that of the beginning 

of the T^ interval before summing, in order to get the 

maximum benefit of the averaging process in reducing noise. 
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FIGURE 13 

UNCOMPENSATED SHORT-TIME CROSS-CORRELATION 

FUNCTIONS (UNAVERAGED) 
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FIGURE 14 

UNCOMPENSATED SHORT-TIME CROSS-CORRELATION 

FUNCTIONS (AVERAGED) 
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As will be seen next, this deskewing can be done as a phase 

rotation of the short-time cross-spectra in the frequency 

domain, or as a delay shift in the time-delay domain.  The 

first method has been implemented by Kuhn, Robison, and 

Winfield [36], by Scarbrough [13], and is the method used in 

the simulations done for this thesis, described in Section 

4.0 and Appendix A.  The latter method has been implemented 

by Betz [38], and termed "Deskewed Short-Time Correlation," 

an name which could be appropriate for either approach, as 

the net effect is essentially the same. 

3.3.1    Compensation in the Frequency Domain 

(Phase Rotation) 

We proceed by taking the Fourier Transform of (3.12) to 
get 

°rlr2(f'^) = -G^g(f)e-^27tf(dj^+d^) 

It is clear that the time-varying delay is equivalent to a 

corresponding time-varying phase rotation of the signal 

auto-power spectrum by an amount (-27tfdj^) radians.  We can 

compensate for this with a counter rotation, + 2nfd, , where 

is the amount of delay shift at time t, (since t = 0); t" i 

an hypothesized delay rate (and so an estimate of the true 

rate, d')/ chosen from a range of possible delay rates. 

Then, averaging the compensated short-time cross-spectra: 

s 
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= (1/M)  ^  a G^^(f,k)e-^27tf(dj^-dj^ + d^) 

k-1 

If we hypothesize t', and thus, d, , correctly then 

^rlrl <f) = -G33(f)e-^2nfd^ 

This is the same cross-spectrum used in the GCC estimator 

(2.20), so that after delay rate compensation the no-motion 

GCC processing (i.e. ML weighting and inverse Fourier 

Transform) can be used to estimate the delay for a range of 

hypothesized T'.  The resultant two-dimensional (t, t') 

ambiguity surface is searched for the global maximum peak. 

The corresponding value of t and x' are our ML estimates for 

d' and d^ respectively.  This process is illustrated in 

Figure 15. 

3.3.2    Compensation in the Delay (Deskewing) 

In this approach, the individual cross-spectra from 

each short-time interval is weighted by W^^(f) and inverse 

Fourier Transformed to get M short-time cross-correlation 

functions.  Each of these is progressively skewed in the 

delay dimension, as in Figure 13.  Then each short-time 

correlation function for the interval T, is shifted 

(deskewed) by d^ =  t'tj^.  This is done, for example, by 

interpolation with a cubic spline as in [38].  Finally the 

deskewed cross-correlations are averaged to get the 
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FIGURE 15 

PHASE ROTATION COMPENSATION BLOCK DIAGRAM 
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equivalent no-motion GCC.  This is done for a range of 

hypothesized t', again generating a two dimensional 

ambiguity surface from which the estimates for d' and d are o 
obtained.  This process is illustrated in Figure 16. 

The simulations reported in [38] verify that this 

method very nearly approximates the ML method of section 

3.2, for a wide range of d', and requires an order of 

magnitude fewer computations than the ML method. 
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FIGURE 16 

DESKEWING COMPENSATION BLOCK DIAGRAM 



4.0  SIMULATION OF MOTION COMPENSATED TDE 

A computer simulation of the motion compensated 

cross-correlator described in Section 3.3.1 was implemented 

on a Hewlett Packard HP9845B desktop computer, to 

experimentally observe the effects on performance when 

motion compensation is used or not used, when there is 

relative motion present.  It was also done to verify some of 

the key theoretical analysis presented earlier, and to gain 
some insight into the problems associated with 

implementation.  The simulation process, test run 

parameters, and test results and discussion are covered in 

the following subsections.  A description of the simulation 
program is provided in Appendix A. 

4.1      Simulation Description 

4.1.1    Signal Generation        i 

! 

Simulated samples of the receiver signals r,(t) and 

r2(t) of (3.5) were generated as follows.  Three independent 

Gaussian pseudo-random noise sequences, having zero-mean and 

unit variance, were generated from independent uniform, 

[0^1], sequences by the "direct method" of [40, pp. 953]. 

One of these was used as the sample sequence s(n) from s(t). 

The other two, n^(n) and n2(n), were scaled according to the 

desired SNR, and represented samples from n,(t) and n2(t). 

The s(n), n^(n), and n2(n) sequences are next filtered 

with a Low-Pass 4-stage, 2-pole Butterworth IIR digital 

filter with fmax = 100 Hz, the upper frequency of the pass 

band for an assumed sample rate of 2048 Hz. 
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The s(n) sequence was processed by a time-varying 

filter function which introduced a phase shift that was 

linearly dependent on frequency, and was varied from time 

sample to time sample, according to the desired simulated 

delay rate, d' (41).  The frequency dependent, linear phase 

shift in the frequency domain is equivalent to a delay in 

the time domain [19, pp. 66-67].  Varying this phase for 

each sample simulates a time-varying time delay, d(n), that 

varies from sample to sample at the rate of d' sample 

intervals/sample interval.  A relative attenuation, «=!, is 

simulated.  Finally s(n) and s(n+d(n)) are added to n,(n) 

and n2(n) to get r,(n) and r^in),   the simulated samples from 

r-^(t) and r^Ct).  Sequence lengths of 256 samples were used 

for each T, interval. 

4.1.2    Processing 

The time-varying time-delay compensation technique of 

Section 3.3.1 was implemented as follows.  Since the signal 

and noise generated have flat spectra and equal SNR across 

the band, an ML weight of v/'^Cf) = 1 was used (i.e., the SCC 

weight).  The frequency domain cross-correlation algorithm 

of [21, pp. 555-562] was used, with 512 point FFT's 

(including 256 augmenting zeroes), but prior to inverse 

transforming, the cross-spectra were phase rotated according 

to (3.13).  Five hypothesized values for x' were used: 

-2/256, -1/256, 0, 1/256, and 2/256 seconds/second (or 

equivalently, sample intervals/sample interval).  Each 

phase-rotated cross-spectrum was then summed and averaged 

with the corresponding ones from the previous intervals and 
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then inverse FFT'd after all M intervals had been processed. 

The five resulting cross-correlations thus formed a 5 by 512 

point ambiguity surface in t', x   space.  The global peak was 
determined and it's corresponding values for t and t' were 

used as the ML estimates of d^ and d', respectively. 

4.1.3    Simulation Parameters 

The simulation was conducted using a total coherent 

integration time of T = 2 seconds, and an assumed sample 
rate of 2048 H .  The total time, T, was sub-divided into 

sixteen 1/8 second intervals (i.e. M=16) of 256 points each 

and processed as indicated above.  SNR's ranging from -12dB 

to +6dB in 3dB steps were used, with 100 trials (2 seconds 
each) run at each SNR.  Delay rates of d' = ±1/256 

seconds/second and initial delays of d = +16, -16 and 0 

samples were simulated.  Statistics on the resulting delay, 

delay rate, and correlation peak amplitude were gathered for 

both compensated and uncompensated correlations. 

4.1.4    Results 

Figure 17 shows the compensated (by phase-rotation) 

short-time cross-correlations for each short segment in a 

single trial.  The SNR was +6dB (this is the same trial 

illustrated in Figures 13 and 14), 

Figure 18 is the ambiguity "surface" generated for the 
same trial shown in Figures 13, 14, and 17. 

Table 2 lists the error performance, log,Q Stdv[d -d ] 

for the delay estimates for compensated and uncompensated 
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FIGURE 17 

COMPENSATED SHORT-TIME CROSS-CORRELATIONS 

(PHASE ROTATION METHOD) 
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SNR(dB) ^°%o ^"^'^'^t^o"*^o-'       Mean Peak Loss (dB) 

COMP NO COMP 

6 0 ,-3.41 -1.63 

3 -4.13 -3.36 -1.62 

0 -3.68 -3.28 -1.60 

-3 -3.46 -2.52 -1.58 

-6 -1.59 -1.39 -2.25 

-9 -1.22 -1.21 -2.72 

-12 -1.16 -1.17 -4.16 

TABLE 2 

SIMULATED RUN STATISTICS 
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processing.  The mean peak loss is defined as 10 log,™ of 
the ratio of the mean correlator peak value for the 

uncompensated processing to that of the compensated 
processing. I 

Figure 19 shows plots of the error performance for the 

simulation runs compared to those predicted by the CPE and 

CRLB.  The x's are from a separate simulation reported in 

[32], for which there was no relative motion.  The points 

marked with "dots" are from the simulation with motion 
reported here.  Note that the vertical axis is in 
log^Q StdvCd^-d^].  The confidence intevals, [20, pp. 

113-115], are indicated.  The upper plot shows the 

uncompensated performance, and the compensated results are 
shown in the lower plot. i 

4.1.5    Discussion 

Figure 17 clearly shows the effectiveness in the 

compensation scheme for d'=1/256.  The bottom correlation is 
the average of all 16 segments.  The peak has been shifted 

back to the true value of d^=0 as expected from (3.13). 

Figure 18 shows the final corss-correlation from a 

single trial for each hypothesized T'which, together, form 

the ambiguity surface.  The center one corresponds to t'=0, 

or no comenpsation.  Note the difference in its peak width 

and height compared to the correctly compensated correlation 

(x'=1/256), second from the bottom.  As predicted earlier, 

the uncompensated correlation peak is both broader 
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("smeared") and lower in amplitude, due to uncompensated 
averaging. 

The performance plots of Figure 19 are consistent with 
the theory presented.  The threshold SNR for the 

uncompensated estimates appears to occur at a higher SNR (= 

+ 1.5dB higher) than for the compensated correlations, which 

is consistent with the = 1.6dB loss in peak value. .Also, 

the error is greater at all SNRs above the threshold due to 

spreading and drop in amplitude of the uncompensated 
correlation peak which is expected to cause an increase in 
local error variation. 



5.0  CONCLUSIONS AND RECOMMENDATIONS 

The theory and analysis presented earlier had indicated 

that the GCC is a near optimum (when spectra must be 

estimated) estimator of time delay for fixed source and 

receivers.  It was shown that the introduciton of motion 

would require compensation for the effects of relative 

time-companding, or equivalently, time varying delay; 

otherwise a reduction in performance would be encountered. 

Several schemes for compensating for these effects were 

described and one using phase rotation of the estimated 

cross-sectra was implemented in the simulation program 

described in Appendix A.  The results of running 100 trials 

for a range of SNR's are consistent with the theory and 

analysis presented earlier.  In particular, compensated 

estimations performed near the optimum defined for the case 

with no-motion.  The effect of no compensation was an 

overall increase in estimation error variance and an onset 

of anomalous errors at a higher SNR than for the compensated 

case. 

The variety of the trials run for the simulation 

results presented here was very limited in scope due to the 

enormous computation times involved.  Use of an array 

processor (such as reported in [32]), would greatly expand 

the number possible run parameters which could be simulated. 

It is recommended that more simulations be run using a 

wider range of delay rates.  Also, simulation results are 

needed which use a larger number of hypothesized delay-rate 

compensations, to determine the effects that more points on 

the ambiguity surface might have on the number of 
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occurrences of anomalous peaks.  Finer SNR steps would help 

to better define the shape of the performance curves, 

allowing a more accurate empirical comparison of error 

performances. ■ 
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APPENDIX A 

Figure A.l is a program structure chart indicating the 

subroutines of the simulation program and their relationship 

to each other.  Figure A.2 is a functional flow chart 

indicating the top-level flow of the simulation program 

process. i 

For listings or program copies contact: 

R. J. Tremblay, Code 3314 
Naval Underwater Systems Center 
New London, Connecticut 06320 

or 

Professor D. W. Lytle 
EE Building, FT-10 
University of Washington 
Seattle, Washington 98195 
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